7 research outputs found

    Optimal Operation Strategy for Multi-Energy Microgrid Participating in Auxiliary Service

    Get PDF
    Since multi-energy microgrid (MEMG) can coordinate various resources to operate as a virtual power plant (VPP), it is an important way to maintain the stable and economic operation of the power systems and decrease the impact of intermittence of distributed energy resources (DERs). However, the potential of MEMG as a VPP has not been thoroughly explored since auxiliary service (AS) market is not fully open for MEMG at present. The relevant challenges include balancing conflict of interests among multiple energy entities, motivating users to adjust flexible loads, integrating multiple flexible resources in energy supply/demand sides and formulating specific policies, etc. To handle these tasks, an optimal operation strategy for MEMG participating in AS is proposed by considering Stackelberg game theory and integrated demand response (IDR). The feasibility of the proposed strategy is validated by a practical MEMG in Hunan, China. The results show that the economic benefits of energy entities are effectively raised and the peak-shaving AS is realized while user satisfaction is also maintained. This work would give reference to the constructor of future AS market to formulate polices about the operation modes and pricing schemes of MEMG

    Effects of Metal Chlorides on the Solubility of Lignin in the Black Liquor of Prehydrolysis Kraft Pulping

    No full text
    The effects of CaCl2, MgCl2, FeCl3, NaCl, and AlCl3 on the solubility of lignin in the prehydrolysis kraft black liquor of Masson pine were studied using a focused-beam reflectance measurement (FBRM) instrument and UV spectra. The results showed that NaCl and AlCl3 have no obvious effects on the coagulation or solubility of lignin in the prehydrolysis kraft black liquor at high effective alkalinity. However, CaCl2, MgCl2, and FeCl3 have significant effects on the solubility of lignin in the black liquor. According to the reduction rate of UV absorbance, the effects of these chloride salts on the black liquor lignin solubility at high alkali content were as follows: AlCl3≈NaCl<MgCl2<CaCl2<FeCl3

    Transaction Model Based on Stackelberg Game Method for Balancing Supply and Demand Sides of Multi-Energy Microgrid

    No full text
    To improve the coordination and complementarity of multiple energy sources, balancing the interests of different participants in a multi-energy system is of great importance. However, traditional centralized optimization can hardly reflect the game relationship between supply side and demand sides. A trading model based on the Stackelberg game model is proposed in this paper to balance the interests of the supply side and demand side and reduce the carbon emissions. First of all, the process of trading between the supply side and demand side based on smart contracts is described. A contractual consensus is obtained through an internal game, and the transaction is completed automatically. Secondly, a bilevel optimization model is established to coordinate the benefits of both parties based on the Stackelberg game model. The energy operator acts as a leader, and considers the two objectives, i.e., maximizing net income and minimizing carbon emissions, and uses the linear weighting method to convert the dual objectives into single objective. Users act as followers and aim to increase the comprehensive benefits, including energy cost and comfort. Then, Karush–Kuhn–Tucker optimality condition is used to transform the bilevel optimization model into an equivalent single-level model. Finally, simulation results show that the proposed method can coordinate the economic interests of both sides of supply and demand and effectively reduce the carbon emissions of the energy operator
    corecore